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We study the problem of estimating the log spectrum of a stationary Gaussian 
time series by thresholding the empirical wavelet coefficients. We propose the use of 
thresholds *,-,„ depending on sample size n, wavelet basis xjj and resolution level j. At 
fine resolution levels (j= 1,2,...), we propose 

tj,n = a;logn, 

where {aj} are level-dependent constants and at coarse levels (j » 1) 

7T 

The purpose of this thresholding level is to make the reconstructed log-spectrum as 
nearly noise-free as possible. In addition to being pleasant from a visual point of view, 
the noise-free character leads to attractive theoretical properties over a wide range of 
smoothness assumptions. Previous proposals set much smaller thresholds and did not 
enjoy these properties. 
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1    Introduction 

Suppose we want to study a time series from an observed segment of the series Xi,...,X^. 
There are two aspects to the study of time series — analysis and modelling. The aim of 

analysis is to understand the nature of the process. The main reason for modelling a time 
series is to enable forecasts of future values of the process. No forecasting can be made 
before we understand the salient features of the process being characterized. 

The analysis of a time series can be done either in the time domain or in the frequency 
domain. In the time domain, attention is focused on the relationship between observations 
at different points in time, e.g. ARM A models; while in the frequency domain it is cyclical 
movements which are studied and this can be done by studying the spectral density h. 
The two forms of analysis are complementary rather than competitive. They give different 
insights into the nature of the process. 

Our goal in this paper is to estimate h from the data XI,...,XN- Here 

1     °° 
h(") = 5-   J2  7(s)cos(sw). 

2?r 

The techniques currently used in spectral analysis are: 

• Window methods (also known as kernel methods'). §6.2.3 of Priestley (1981). A spec- 
tral window (also called weight function) is used to smooth the periodogram, or 
equivalently a lag window (also known as weight sequences, Priestley (1981), pp. 
437, covariance window, Bentkus and Susinskas (1982)) W(-) is applied to the sample 
auto-covariances. The resulting estimate is: 

M") = ^ £ W(Syf(s)cos(su) 
\s\<N 

Typical choices of windows include the Fejer window: W(s) = I[\S\<M] for some 

1 < M < N, for example M = y/W; Bartlett window: W(s) = (1 - \s\/M)+; Daniell 
window, W(s) = sm(ws/M)/(irs/M); see §6.2.3 of Priestley (1981) for more choices 
of windows. Bentkus and Susinskas (1982) has studied optimal L2 convergence rate 
for the window method over certain classes of smooth spectra. 

• Autoregressive spectral estimation (AR approximation), Parzen (1974). A high order 
autoregressive model 

Vt = <f>iVt-i + ■■• + 4>Pyt-p + £t 

is fit and the corresponding spectrum, a rational function, 

~2 

h(u) = 
2x|l - 4>\z <t>p 

is taken as an approximation to /. 
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• Mixtures of the above, e.g. the prewhitening technique, §7.4.1 of Priestley (1981). 

• Maximum entropy (ME) methods, introduced by Burg (1967, 1972). This method is 
essentially equivalent to AR method. 

• ARMA approximation: similar idea as AR approximation. 

They perform well in many cases and have been used frequently in practice. They have 
both advantages and disadvantages. For example, window methods have computational 
advantages but they may perform poorly in cases of high dynamic range; AR approxima- 
tion is suitable only for relatively smooth spectra, Tukey (1978); ARMA procedures are 
almost always effective and furnishes attractive interpretations for the derived model; but 
it is computationally unrealistic to fit high-order ARMA models, and rigorous theory of 
asymptotic properties is lacking. 

In this paper, we will develop a technique, based on wavelet decomposition of the 
periodogram and reconstruction of the spectrum; our new approach avoids shortcomings 
of earlier methods. Our new approach is computationally efficient; it can estimate spectra 
which are nonsmooth at a near-optimal rate; and it can be rigorously analyzed. 

It is well known that the asymptotic variances of the empirical wavelet coefficients 
are functions of the unknown spectrum, and that non-linear Wavelet Shrinkage procedure 
below heavily depends on the asymptotic variances. Since the asymptotic variances are 
"proportional" to the coefficients, i.e., the bigger the coefficients at location (j,k), the 
higher the noise level at this location. This makes estimation more difficult in practice. In 
order to overcome the heteroscedasticity, we therefore consider estimating the log-spectrum. 

Suppose we observe a segment X0,Xi, ...,X2n-i of a Gaussian time series with mean 
zero and spectral density h, where for simplicity we assume that n = 2m is dyadic. In 
this paper we discuss the following 4-step wavelet shrinkage procedure for estimation of log 
spectrum, g = log h: 

[I] Calculate the log-periodogram 

zi = logJ(wi),        I - 0,...,7i- 1, 

where u\ = l/2n and 
-,       2n-l 

t=0 

[2] Take a standard periodic wavelet transform of (z/) to get the empirical wavelet coef- 

ficients {yj,k}j=l,2,...m-l,k=0 71/2J-1 • 

[3] Apply the soft threshold 
St(x) = sga(x)(\x\-t)+ (2) 



to the empirical wavelet coefficients {yj,k}> with level-dependent thresholds t = tjtn 

according to formula 

tj,n = -WlognV a; log n (3) 

where (a:,..., a10) = (1.29,1.09,0.92,0.77,0.65,0.54,0.46,0.39,0.32,0.27) for the com- 
monly used compactly supported orthogonal wavelet bases (coiflets, doublets and 
symmlets, Chapters 6 and 8 of Daubechies, 1992) and some selected n. 

[4] Invert the wavelet transform, producing an estimate (g*) of the log-spectrum at the 
Fourier frequencies u\. 

This procedure falls in the general category of wavelet shrinkage estimates for noisy 
data. Donoho and Johnstone (1992a,b,c), have discussed the application of such thresholded 
wavelet transforms for recovering curves from noisy data, where the noise is assumed to 
have a Gaussian distribution, and they have proposed the level-independent threshold tn = 
<ri/2log(n), where a is the noise level. Such methods have also been developed in density 
estimation: Johnstone, Kerkyacharian and Picard (1992) propose the use of level-dependent 
thresholds yß. In general such wavelet shrinkage methods have a number of theoretical 
advantages, including near-optimal mean-squared error and near-ideal spatial adaptation. 

Recently, the author and others have studied the possibility of using wavelet shrinkage 
to de-noise periodogram data. Application of wavelet shrinkage to the log-periodogram is 
particularly attractive, Moulin (1993a, b), since the logarithm is the variance stabilizing 
transformation for the periodogram, Wahba (1980). 

It is easy to apply wavelet shrinkage software designed for Gaussian noise to the log pe- 
riodogram, and in some cases acceptable reconstructions have been obtained. However, this 
will not always be the case. The noise in the wavelet coefficients of the log-periodogram has 
a non-Gaussian character; it reaches high levels somewhat more frequently than Gaussian 
theory would predict. Consequently, thresholds set based on Gaussian theory will not be 
high enough to completely suppress noise in the coefficients. The thresholding we propose 
is based on a careful analysis of the non-Gaussian character, and is somewhat larger than 
Gaussian theory would predict. 

As an example of the difference between our method and other proposals, we present 
in Figure 1 a display for an AR(24) time series: (a) its log spectrum; (b) log periodogram; 
and wavelet reconstructions based on (c) our proposal and (d) based on Gaussian theory. It 
is visually evident that the spectral estimate based on Gaussian theory has spurious noise 
spikes, which are unrelated to the true underlying spectrum. More plots for this example, 
along with other examples, for different sample sizes and different wavelet bases, are given 
at the end of the paper. 

The pattern visually evident in this example is confirmed by two theorems which we 
prove in this paper. 



Theorem 1  Under the Wahba approximation for log periodograms (see section 2.2 below), 
as n —f oo, 

,P{|J[sup \yjik - EVj,k\ > tJ3n]} - 0. (4) 
i    k 

In words, the thresholds are set high enough so that the noise does not surpass them. 

Theorem 2  Under the Wahba approximation for log periodograms and a compactly sup- 
ported wavelet basis, at the finest level j = l, as n —*■ oo, 

P{sup |yu - Eyhk\ > ^21ogn} — 1. (5) 
k 

Similar results hold at levels j = 2,3,.... 

In words: noise spikes are almost surely to be absent for our proposal and almost surely 
to be present in a proposal based on Gaussian noise. 

The significance of these noise spikes and the need to de-noise is more than cosmetic. In 
a recent article, Donoho, Johnstone, Kerkyacharian and Picard (1992) study the Gaussian 
white noise model, and show that by exploiting a noise-free property like (4) one can 
show that the estimator attains near-optimal reconstruction in a wide variety of norms 
simultaneously over a wide variety of smoothness assumptions. Their arguments are general 
and abstract and transfer to the present setting after one has established the de-noising 
property (4) 

If noise-free property like (4) is not maintained, then an inspection of their arguments 
will show that the resulting estimate does not achieve near optimal reconstruction in norms 
which measure smoothness of the reconstruction, although it may well be true that the error 
in £2 norm, which does not measure smoothness, is still acceptable. 

2    The Choice of Thresholds 

Our choice of the thresholds (£j,n) depends on the tail behavior of the empirical coefficients 

{Vj,k}- Let 
Pj(t) = maxP{\yjtk - Eyjjk\ > t} (6) 

k 

be the tail probability of yjik, where wavelet coefficient y^k is a standardized linear combi- 
nation of the log periodogram ordinates. Then we aim to establish that 

nPj(tj,n) -+ 0,       n -* 00, (7) 

uniformly for j — 1,2,..., m - 1 as this implies (4) in Theorem 1 (see (15). In this section, 
we would like to give two heuristic arguments, upon which our proposed thresholds (3) are 
based. 



2.1    Normal Approximation 

For normally distributed wavelet coefficients 

wi,k = aj,k + £j,k 

where Ej,k ~ N(0,<72) are iid, the threshold 

tjtK = tn = ay/2]ogn 

enjoys a variety of nice theoretical properties, Donoho and Johnstone (1992a, b, c). Under 
certain regularity conditions, for j close to m = [log2 n] (technically j -+ oo as m —► oo), 
as n —y oo, individual empirical wavelet coefficients will be asymptotically normal: 

wjJt - Ewjtk ~ N(0, TT
2
/6) 

this follows by applying results of Taniguchi (1979, 1980). Moulin (1993a, b) makes similar 
argument. So when the sample size n is large, for coarse levels (j close to m), yjto, ...,2/JI2J-I 

are approximately normally distributed with the same variance x2/6. One may argue that 

»(x^MW S ji^gf,       m>j~ CO. (8) 

Therefore (7) holds and this leads to the first part of our thresholds. 
Here "regularity" refers to the length of memory and the asymptotic normality for the 

empirical coefficients not only depends on n (large) and j (large), but also the regularity of 
the time series. In general, the longer the memory, the weaker the asymptotic normality. 

2.2    Wahba Approximation 

For small j, the normal approximation deteriorates. Under a compactly supported wavelet 
basis (chapters 6 and 8 of Daubechies, 1992), for fixed j, the coefficients of the finest level 
yj,k's are linear combinations of fixed number of {log/(w;)}. For example, with the Haar 
wavelet, j/i^ is just the difference of two adjacent logI(u;/)'s. 

Consider the following non-Gaussian additive noise model: 

zi = gi + et (9) 

/ = 1,2, ...,n - 1, where (gi) is the object to be estimated (e.g. log spectrum at frequency 
w/)'and 

et = log(j7,-/2) + 7 (10) 

where {r/,-, i = 1,2,..., n - 1} are independently xl = exP( V2) distributed and 7 = 0.57721 
is the Euler-Mascheroni constant. It can be shown that Eei = 0 and var(£,-) = -2/6. 
Wahba (1980) proposed this as a model for the log periodogram, i.e., z\ « log/(w;) and 



gi « log/(u>/) - 7. Note that I{UQ) ~ ^2 Since the influence of this term is negligible for 
n large, we will ignore this term in our discussion. 

For circulant time series, see §4.3 of Harvey (1989), log/(a;/) follows model (9)-(10) 
exactly. For general stationary processes, the above model is only asymptotically true (see 
Theorem 5.2.6 of Brillinger, 1981). The exact distribution of log periodogram can be found 
in Wittwer (1986). 

Now we will show that under the model (9)-(10), our advertised thresholds are indeed 
adequate for the finer levels. Note that under model (9)-(10), each yjtk is a standardized 
linear combination of z,'s. 

Let us use the very finest level, j = 1, as an example.  Similar results hold for levels 
j= 2,3,.... Suppose a compactly supported wavelet basis with L coefficients in the dilation 
equation. For example, for the Haar wavelet, L = 2; D4 wavelet, L = 4, etc., more examples 
can be found in Chapters 6 and 8 of Daubechies (1992). Then 

L 

Vi,k = 22 aizi+2k-3 
1=1 

where s is some shift parameter for computational purpose (e.g. 5 = L/2) and £ a/ = 
0, Yiaf = 1- Inequalities below leads to the threshold (3). 

Let a = maxi</<£ |a/|, from the proofs of the Theorems (see (16) and (22) of Appendix), 
we can show that for t large, 

0.25e"2t/a < Pl(t) < (et/aL)Le-^a. (11) 

Hence, for n large, there is a constant A so that 

0-25   ^                 , „ A(logn)L 

-   ,   < pi(alogn) < —-—; . (12) 

Hence thresholds at the finest level must have the form: alogrc, for some constant a > a, 
and then 

npi(alog(2n)) -»• 0,       n -*■ 00. (13) 

Note that the wavelet filters obey YA=\ 
al — 1> which implies a < 1. Hence, for the finest 

level, taking a — 1 always guarantees (13) and (7) follows for our proposal tjin. 
In general, there are Lj non-zero constants a,j so that 

yj,k ~ J2 ai,izi®k2i (14) 
.=1 

where © in subscript is interpreted modulo n. Let a,j = max,- |a,j|, then we have 

Lj < 2j{L -l)-L + 2 and a,- < a2~u~1)/2, 

where L is the length of the filter and a = supi>1 2(~j~1^2aj < 1.534. In Tables 1 and 2 of 
Appendix, we list some Ij's and 2(-:>~1W2aj,s for the commonly used wavelets (apparently 
they converge to sup^ |^(x)|). This leads to the threshold (3). 



3    Numerical Examples 

In this section, we study four time series and compare our proposed method with the one 
based on Gaussian theory. 

Figure 1 contains an AR(24) signal, with coefficients: 
-2.5216281       4.7715359     -7.9199915     11.9769211 -16.0778828 
20.6343346    -25.0531521     28.8738136    -31.8046265 34.0071373 

-34.7700272     34.3151321    -32.7861099     30.2861233 -26.7109356 
22.8838310    -18.7432098     14.5717688    -10.7177744 7.5322194 
-4.7226319       2.6807923     -1.3391306       0.5167125 

Figure 2 contains a white noise siganl, the true log spectral density in this case is g(oj) = 
log(cr2/27r), a constant. 

Figure 3 contains an MA(15001) time series with coefficients 

/, sin(xn/2) ,  .       ,,„„„ 
ax = jr/4,   an+i = —*——,   n = 1,2,..., 15000. 

n 

AR method is compared in this example. 

Figure 4 contains the Sunspots signal, WaveShrink estimate with comparisons with an AR 
estimate from SPLUS function spec.ar. An AR(2) model, suggested by Priestley (1981), 
pp. 882, is also plotted. 



Figure 1: (a), log spectrum of an AR(24) time series, (b). log periodogram, (c). WaveShrink 
estimate based the new thresholding scheme, and (d). WaveShrink estimate based on Gaussian 
theory. 



Figure 2: (a), log spectrum of a white noise signal, (b). log periodogram, (c). WaveShrink estimate 
based the new thresholding scheme, and (d). WaveShrink estimate based on Gaussian theory. 
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Figure 3: (a), log spectrum of a long MA series, (b). log periodogram, (c). WaveShrink estimate 
based the new thresholding scheme, and (d). AR estimate from SPLUS function spec.ar. 
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Figure 4:   (a),  sunspots data, (b).   log periodogram, (c).   WaveShrink estimate (solid line) and 
AR(2) estimate (dotted line), and (d). AR (of order 27) estimate. 
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4    Appendix 

4.1    Tables 

Ll Hl L2 H2 L3 H3 L4 H4 L5 H5 L6 H6 

C6 0.85 0.85 0.95 1.10 1.02 1.28 1.07 1.40 1.10 1.48 1.13 1.53 

C12 0.81 0.81 0.85 1.01 0.86 1.08 0.87 1.10 0.87 1.11 0.87 1.12 

C18 0.79 0.79 0.81 0.96 0.81 0.99 0.81 1.00 0.81 1.00 0.81 1.00 

C24 0.78 0.78 0.79 0.93 0.79 0.94 0.79 0.95 0.79 0.95 0.79 0.95 

C30 0.77 0.77 0.78 0.91 0.78 0.91 0.78 0.92 0.78 0.92 0.78 0.92 

D2 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 

D4 0.84 0.84 0.95 1.08 0.99 1.23 1.00 1.28 1.00 1.29 0.99 1.28 

D6 0.81 0.81 0.83 0.98 0.86 1.03 0.89 1.11 0.90 1.15 0.90 1.18 

D8 0.71 0.71 0.79 0.77 0.78 0.95 0.79 0.96 0.79 0.94 0.79 0.96 

D10 0.72 0.72 0.81 0.94 0.74 0.89 0.75 0.83 0.76 0.84 0.76 0.84 

D12 0.75 0.75 0.75 0.92 0.74 0.80 0.73 0.80 0.73 0.80 0.73 0.8 

D14 0.73 0.73 0.74 0.79 0.73 0.82 0.73 0.79 0.73 0.79 0.73 0.79 

D16 0.68 0.68 0.74 0.82 0.71 0.82 0.71 0.79 0.71 0.78 0.71 0.78 

D18 0.66 0.66 0.72 0.87 0.70 0.74 0.70 0.75 0.70 0.76 0.70 0.76 

D20 0.69 0.69 0.69 0.82 0.68 0.75 0.68 0.73 0.69 0.72 0.69 0.73 

S8 0.80 0.80 0.85 0.99 0.85 1.05 0.85 1.05 0.85 1.06 0.86 1.07 

S10 0.72 0.72 0.77 0.77 0.78 0.89 0.79 0.93 0.79 0.94 0.79 0.95 

S12 0.79 0.79 0.80 0.95 0.80 0.97 0.81 0.97 0.81 1.00 0.81 1.00 

S14 0.77 0.77 0.79 0.92 0.79 0.95 0.77 0.92 0.77 0.89 0.77 0.89 

S16 0.78 0.78 0.78 0.91 0.78 0.92 0.79 0.93 0.79 0.95 0.79 0.95 

S18 0.72 0.72 0.76 0.76 0.77 0.89 0.77 0.89 0.77 0.89 0.77 0.89 

S20 0.77 0.77 0.77 0.89 0.77 0.89 0.78 0.91 0.78 0.92 0.78 0.92 

Table 1: Maximum Coefficients, Lj low-pass cascade filter at level j, Hj high-pass cascade 
filter at level j. C for Coiflets; D for Daublets, Daubechies' original wavelets; S for Symmlet. 
Daubechies' near-symmetric wavelets. 
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L=2 L=4 L=6 L=8 L=10 L=12 L=14j L=16 L=18 L=20 

j=l 2 4 6 8 10 12 14 16 18 20 

j=2 4 10 16 22 28 34 40 46 52 58 

j=3 8 22 36 50 64 78 92 106 120 134 

j=4 16 46 76 106 136 166 196 226 256 286 
j=5 32 94 156 218 280 342 404 466 528 590 
j=6 64 190 316 442 568 694 820 946 1072 1198 

Table 2: Number of Non-zero Coefficients, L is the length, of the filter and j = level. 

4.2    Proofs of the Theorems 

Proof of Theorem 1: First of all, 

m-l 

P{|J[sup \yj,k-Eyjtk\ > tjtn]}   <    Yl p{suP lifc* - EVj*\ > hn) 
j      k j=\ k 

m-l 

<    Yl VPifan) ^ ".max Pj(tj,n) (15) 
j=l 

Under model (9) and (10), from (14), coefficients in level j can be written as 

Li 

Vj.k ~ EVj,k = Y ahi£i®k23 
«=i 

with J2i ai,j — 0 an(i Hi a?,j = 1- Let a,j = max; |a,-,j|. 
The moment generating function for s ~ log(xi/2) is 

M(u) = Ee^ = T(u + 1) 

where T is Euler's Gamma function. Let 

L: 
A*(i) = mf{-st + ^(logr(l + atjs) + logr(l - aiJs))} 

«=i 

It can be shown that for any random variable X with EX = 0, 

. P(X >a)< e-atEetX 

for all a > 0 and t. Then 
Pj(t) < eW 

and therefore, 
max pj(t) <   sup   eAj'^ = exp( sup   A."At)) 

l<j<m l<j<m l<j<m 
(16) 

14 



Let £n = (log n)7/6 and consider 

^2£i        Lj < ln 

t* = {    WL_   ~J  " "  • (17) 
ßVfigZ   Li>ln 

For the thresholds 

we have ijf„ > ty Therefore, 

and 

sup  pj(tj,n) <   sup  pj(tmj) < exp( sup  A.j(t])) 
l<j<m l<j<m l<j<m 

sup  A*(**)   <       sup    A'(*-)V    SUP    AK'i) 
l<j<m l<Li«n tn<Lj<n 

= _suP< A;(2^)VJ SUP_ AjoMSinö (is) 
1<Z,,<*„ ij/4 ln<L,<n 

When ij < 4 = (log n)7/6 and n large, we have 

alogn rr~ 

Consider the following non-positive function H, defined on R+ by 

H(t) = -t + l + logt 

Lemma 1 For t > ajLj, 

A;(<) < LiH(-^-) 

and 

i #(—r^rr) I  zn L for lar9e n and I < L <£n- 

The proof will be given later. Combining (16) and Lemma 1 yields the second part of (11). 
From the Lemma, 

alogn alogn 
SU

P   
AK-rr7r)  ^     SUP   LJH(—^ü) i<Lj<en       Ly \<L,<U        airy 

<    #(-logn) = --logn(l + o(l)) (19) 
a a 

When Xj > 4i, we have 

and 

15 



Lemma 2 For Sj € (0,1) and 0 < t < Tr2Sj/6aj, 

**'<«>£ -im;«,- 
In particular, for n large and Sj = SßajLj   /T2

 X Lj '     < (log n)-1/12, 

A;(«)<~(I + O(I))       *</J£;
/T

. 

The proof will be given later. 
From the Lemma, 

sup    A*(/?vfcg^) <~3ß ^"(1 + o(l)). (20) 

Combining (18), (19) and (20), we have 

sup  A;(^)<-(^/\M)iogn(1 + o(1)). 
l<j<m "        T 

Therefore, for any a > a and /? > 7r/\/3, 

n  sup  p,-(tj,n) < nexp( sup   A^(<_,-,„)) = o(l). 
l<j<m l<j<m 

and this completes the proof of Theorem 1. 

Proof of Lemma 1: First of all, it can be shown that for 0 < x < 1, T(l + x) < T(l - x) 

and r(ar) < 1/x.   (In fact, T(x) = x~l UkLi (\+*//T aad (1 + V*)* < l + xlk when 

0 < x < 1.) Therefore, 

A*(0   <       inf   {-S* + £>gr(l + at-,j5)} 

^   Ljinf{--^-log(l-s)} 
0<s<l        OLjLj 

and the first part of the Lemma can be easily solved from the last expression. 
For n large, such that Cn = aa'1 logn > 11 and ln = (logn)7/6 < (Cn/ll)

4/3. Let 
h(x) = xH(Cnx~3/4), then for 1 < x < £n, h'(ar) is increasing in x and /i'(4i) < 0. 
Therefore, h'(x) < 0 for 1 < x < £n and this means h(x) is decreasing in x. The proof is 
completed. 

Proof of Lemma 2:  Let K{x) = logT(l + x), then for x > -1, by Taylor expansion, 

K(x) = K(0) + K'(0)x + x2K"{6x)/2 = -7x + x2K"(9x)/2, (21) 

16 



where 7 = 0.5772.... is the Euler constant and 9 = 9(x) € (0,1).  Note that K'{x - 1) 
is the famous Psi function.   By the properties of Psi function (Davis (1935), pp.   11), 

K"{X) = ET=i(k + x)~2 and #"(°) = ^V6- Hence>for aQys e (°>*)> we have K"(~6) ^ 
K"(0) + ZS = Ks and for x > -6, 

K(x) < -71 + x2Ks/2. 

Recall that £,• a,j = 0 and £,- afj = 1, 

i 

<       inf   {-st + Y,(-iaijS + aljS2Ks/2)} 
\3\<6j/aj i 

inf     {-3< + 52Z5/2} 
M<*i/<»i 

and Lemma 2 follows immediately. 

Proof of Theorem 2:  To prove Theorem 2, we need a lower bound for Pj(t). It is easy 
to show that if X,Y are independent, then for any s,t > 0, 

P{\X + Y\>t}> P{\X\ < s}P{\Y\ >t + s}. 

Suppose |ai| = max |a/| = a. There exists to > 0 such that for t > to, 

L 1 
P{l5>log(W2)|<<}>r. 

1=2 i 

Also notice that for 0 < x < 1, 1 - e~x > x/2. Then 

L 

Pi(t)   =   P{lEa'loS(W2)l>0 

L 

>    P{|a1log(77l/2)| > 2i}P{|£a'loS(W2)l < *} 
1=2 

> \p{\iog(m/2)\>*} 

> ^{logCW«) <-7} 

=    I{l-«p(-e-»/*)}>ie-w/-. (22) 

and this completes the proof of Lemma 1. 

From (12) we can see that for any constant C < a/2, 

npi(Clogn) -* 00,      n —► 00. 
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In particular, 

npi(\/21ogn) = npi(«/r logn) -* oo,      n -* oo. 

There exists K > 0 such that {yi ,,•«•} are independent (linear combinations over disjoint 
intervals). Therefore, 

P{sup \yx k - Eyitk\ > >/21ogn}   >    P{sup |yi,,-/c - -Eyi.itfl > V21ogn} 
k i 

n/2K 

=     1-   n(l-Pl(V^log"))-l, 
i=0 

and this implies the Theorem 2. 
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